# Economic instruments and pricing for Integrated Water Resources Management

Antonio Massarutto
University of Udine and IEFE, Bocconi University, Milano
antonio.massarutto@uniud.it

INECO Final Conference
Institutional and Economic Instruments towards Integrated Water Resources
Management in the Mediterranean Region
Thursday, 11th June 2009, Nicosia, Cyprus

# WATER AND ECONOMICS: FROM THE "OLD" TO THE "NEW" WATER CULTURE

## The economic policy in the "old water culture"

- The logic of subsidizing water through public budget
  - Essentialness of water creates a political support for waterworks
  - Public finance needed for first-time investment
  - Emphasis on positive externalities provided by universal service
  - Private systems unsustainable unless for the "happy few"
  - System more sustainable in the long run if many users connect
- What went wrong with the "old water culture"
  - Favours irresponsive development of water demand (low marginal cost of supply until capacity is reached)
  - Water allocation driven by capacity to lobby for public funds
  - Considers pressures (urban growth, irrigated agriculture etc) as independent variables; no automatic signal
  - Budget constraint ⇔ increasingly difficult to rely on taxation

## The economic policy of the "new water culture"

### Economic logic

- Allocation of water should reflect its economic value ⇔ uses
   with higher value should have priority
- Allocation of *money* should reflect a benefit / cost calculation
   increasing supplies is not necessarily beneficial
- Understanding interactions btw uses is crucial ⇔ externalities

#### Economic instruments

- Provide correct signals to all actors involved (users, operators)
- Provide an acceptable way for sharing costs
- Guarantee that water service costs are recovered in order to ensure that operation remains viable
- Guarantee that (negative) externalities are accounted for and (positive) externalities are promoted adequately

# Pricing in the "new water culture"

- Addressing pressure factors
  - Economic incentives might help reducing pressures
  - might address target users towards desired actions (eg water saving)
- Achieving efficiency
  - Pricing might ensure that water is allocated to the most valuable uses
  - Pricing might ensure that water services are developed and improved up to the limit where the marginal effort is overcompensated by a marginal gain
- Financial sustainability
  - Prices generate endogenous and more reliable revenues
  - Can be adjusted more flexibly than government grants
- Equity
  - Prices may be constructed in a way that avoids impact on sensitive customers and the poor
  - Pricing systems might be designed in order to foster some degree of costsharing among areas, categories and households
  - Economic instruments might be designed in order to compensate losers

## Water as an economic good

- What does it meen exactly?
  - Water has an economic value ⇔ there is an economic demand for water, meaning that one would be willing to pay (WTP) for having it
  - Water is scarce ⇔ nothing to do with absolute quantity !!
    - Water on the moon is not "scarce" in economic terms
    - Water in the Po basin is scarce (although natural availability is one of the highest in Europe)
  - Scarcity is a function of rivalry ⇔ a resource is scarce if there is competition for using it
- What are the implications?
  - Economic scarcity of water adds a new dimension to water management
  - Policy shift: from "supply side" to IWRM

## Perspectives on water value (demand)

#### **Private dimension**

- WTP (Net benefit)
  - The maximum one would be willing to pay for an extra m3
  - residual economic value that can be appropriated after covering private costs
  - Influenced by economic and social dynamics
- ATP (individual affordability)
  - The maximum one is able to pay, given his income and capacity to access credit

#### **Social dimension**

- Social WTP (net social benefit)
  - Social value > private value
    - Includes externalities (eg public health)
    - Includes merit goods (eg value of universal service)
    - Includes ecosystem services
  - Social cost > private cost
    - Includes externalities (aquifer depletion)
    - Includes costs that are socialized through public budget or other subsidies
    - (should) include costs/benefits transferred to next generations
- Social ATP (collective affordability)
  - The maximum effort that the collectivity is able to perform
  - Depends on GDP and on available means for mobilizing economic resources

## Perspectives on (water) scarcity

#### Scarce resource = money

- Water abundant, but costly to mobilize
- Social value of water > private value ⇔ market demand not enough
- Emphasis on water service infrastructure as public goods
- Key economic driver: financial cost
- Policy: funding water services from the public budget
- Emphasis on supply-side and infrastructure (limit = social ATP)
- IWRM not a priority unless for sharing the cost of infrastructure: each use has its own water policy

#### **Scarce resource = cheap water**

- Available resources can be increased, but the social value is lower than the extra cost
- Key economic driver: resource cost
- Policy
  - Regulation of water use
  - Attention to the economic dimensions of water management
  - Attention to economic dimensions behind pressure factors
- Emphasis on:
  - Demand management
  - Addressing pressure factors
  - Increasing efficiency of use
  - Increase multilateral externalities
- IWRM as an opportunity for sharing water in a more effective way

## Absolute vs. marginal value

- Economic value does not depend on how much a good is "necessary" ⇔ absolute value
  - Air is fundamental for life, but has no economic value ⇔ we cannot survive without air, but there is plenty of air available
  - A m3 of water has a higher value in Cyprus than in Norway: this is not to say that water in Norway is less fundamental than in Cyprus
  - A Ferrari is not fundamental for life, but has an economic value ⇔ one can have an extra Ferrari only at a very high cost
- Economics is concerned with value at the margin
  - Most private goods can be reproduced at some cost; the additional cost of an extra unit should be confronted with its additional value
  - Water supply can be expanded in the same way, but only up to a certain point (carrying capacity threshold)
  - In general, expansion of water supply entails transformations in the way it is owned, shared and managed; society should become ready to handle this change (technical, institutional, political)

# Evolution leading towards a carrying capacity threshold

- Dynamics of pressure factors
  - Urban development
  - Industrial pressure
  - Irrigation
- Dynamics of resource availability
  - Climate change
  - Ecological constraints
  - Budget constraints

# WATER POLICY ISSUES IN MEDITERRANEAN COUNTRIES

### The economics of water stress



# Implications of the dilemma

- Difficult to expand the supply
  - Expansion of supply not affordable nor economically efficient
  - If feasible, requires new institutional developments (eg for delegating management to professional systems)
  - Conflicts about the new governance of management systems
- Unsustainable to maintain the status quo
  - Status quo encourages a dissipative use of available resources (unless an effective regulation of all impacts is provided)
  - Conflict among users

# Alternative strategies - I

- Expand supply ⇔ doing more with more raw water
  - Eg dams; water transfers; desalination
  - very costly, most of the times inefficient
  - Subsidizes also uses that do not need to be subsidized
  - Usually not affordable if FCR (and not even for the state)
  - requires that other communities are affected and forced to share problems with the water-stressed one
- Increase productivity ⇔ doing more w/ same raw water
  - Eg reduce leakage, wastewater reuse, adopt water saving appliances, treatment of polluted water
  - saving water ≠ saving money (it actually costs a lot of money)
  - how will this extra cost be shared? need to ensure that lowvalue uses are not excluded and extra cost remains affordable
  - need for public subsidies at least in the initial phase
  - Requires professional managing systems ⇔ delegation + regulation + confidence

# Alternative strategies - II

#### Segmentation of uses

- Force new users to adopt more costly systems in order to reserve cheap water for "incumbents" and "politically preferred" ones
- Eg: force touristic resorts and industry to build desalinators; force urban supply to buy long-distance supplies and leave local resources to agriculture and hydropower; force new developers to pay higher connection fees; promote rainwater harvesting for some uses
- Relatively inefficient
- Affordable only for high value uses
- Not necessarily equitable (incumbents are preferred to new uses), but often acceptable as a second-best solution
- Does not guarantee that pressure factors are addressed (except for high-value uses)

#### Phase-out some uses: doing less with same raw water

- "irrigar los turistas vale mas que irrigar los campos"
- socially or politically difficult; enforcement problems if based on C&C
- drivers of demand should be addressed as well (eg pressure for urban development)
- compensation can alleviate political opposition

# Implications for policy - I

- Typology of economic problems
  - Infrastructural solutions impact on water service costs and require an effective strategy for minimizing them
  - In particular, a financial strategy is needed in order to keep capital cost as low as possible \(\Lipi\) it depends on how the risk is allocated
  - Demand-based solutions impact on residual value for users
     and require an effective way for implementing property rights
- Need of politically acceptable ways of sharing costs
  - Incumbents normally unwilling (often unable) to pay more
  - New entrants are willing to pay (some) more, but are reluctant and prefer to lobby for having the same rights as incumbents
  - Public participation is fundamental

# Implications for policy - II

- Trade-off: (resource) scarcity may be solved by infrastructure, but:
  - Limited by budget constraints and not always efficient
  - It also implies a need to develop a professional and technology-intensive system: who will manage it? Who will regulate it? How will the people become confident?
- Case for using economic instruments
  - Communicate the right value of water services in order to prevent wasteful demand
  - Ensure the economic viability of water services
  - Support policy actions by sending an incentive to target users

# HOW ECONOMIC INSTRUMENTS CAN HELP?

### Wrong perceptions on economic instruments

- Supporters (the "Water Washington Consensus")
  - The scarcity problem is (just a) pricing problem ⇔ get the price right and all problems will be solved automatically
  - Inefficient allocation derives from lack of economic support to decision ⇔ do CBA and allocation will be efficient
  - Inefficient management derives from the public sector ⇔ provide water services as commercial utilities
  - State vulnerable to "capture": let market operate
- Adversaries (the "Water Anti Globalism")
  - Paying for water = privatizing resources
  - Water prices ⇔ profits for shareholders of water companies
  - Paying for water = privileging the rich and denying social rights

## Some more realistic views - I

- Many problems at the same time: no "one best way"
  - Efficiency vs. distributive vs. financial vs. environment
  - Economics is important but not the sole
- Stakeholder response to EI not obvious
  - Need of appropriate models for understanding reaction
  - Target matters
  - Short-term and long-term reaction usually different
  - Sudden price increase during a drought may be useless
- Design of economic instrument not obvious
  - Pricing: trade-offs entailed by alternative tariff structures (eg IBT vs. affordability, cost recovery)
  - Economic instruments ⇔ new costs (eg metering)
  - Not all policy targets depend on "cubic meters" (especially for pollution control)

### Some more realistic views - II

- Affordability is a hard constraint, but should not be overemphasized, at least in developed countries
  - Collective affordability is a f of GDP 
     what is not affordable today may be affordable in the future; let's adapt solutions to the path of development of the economy
  - Individual affordability can be achieved with appropriate costsharing ⇔ don't overemphasize marginal cost pricing as a rule
- Political acceptability is also a constraint
  - The vicious circle of low funding (see next figure)
  - Established uses perceive themselves as holders of right
  - "Devil's agreement" between delinquent payers and politicians
- Private sector might help but:
  - Not for free nor problemless
  - Requires economic regulation
  - Needs social confidence on the private sector

#### The Vicious Spiral of Low Funding



Source: UNESCO, World Water Development report 3 (forthcoming)

# FROM THEORY TO REAL WORLD: ISSUES IN DESIGNING ECONOMIC INSTRUMENTS

## Conflicting targets

- Provide signals to water users aimed at avoiding externalities
  - Keep the use of renewable resources below the recharge level
  - Human water uses should not hamper basic ecosystem services
  - Address pressure factors
- Efficient allocation of resources
  - Available water should be allocated to the most productive uses
  - Available economic resources should be invested for improving water supplies only if B>C
- Financial sustainability of water services
  - Water service assets should maintain value over time
  - Water undertakings should be able to gather the necessary resources from the market and be able to remunerate them
- Equity
  - The cost and benefits of water policies should be shared equitably
  - Accessibility should be granted to all at fair conditions, regardless the ability to pay

# Alternative approaches to pricing

### Ecological sustainability

- Prices should be high enough so as to provide an incentive towards the desired policy target (eg water saving)
- Not necessarily related to cost
- Not necessarily to be intended as "prices"
- Constraint: elasticity to price
- Targeted subsidies might be useful (eg for adapting facilities)

### Efficiency

- Resource scarcity cost should be reflected into prices
- Focus on marginal cost (typically MRC is very high in water-stressed situation, but MFC is usually very low)
- Problem: short-term demand very inelastic to price
- Emphasis on marginal cost (but cost of infrastructure is mostly fixed)
- Subsidies should be avoided

# Alternative approaches to pricing

### Financial sustainability of water services

- Total revenues should match total cost (regardless how)
- Revenues should allow a margin over operational costs for compensating capital expenditures (loan reimbursement)
- Not necessarily related to consumption (volume pricing encourages suppliers to maximize sales)
- Once infrastructure is in place, it is inefficient to limit the use of those who don't pay until capacity is reached; recovering fixed cost through tariffs efficient as a second-best solution

#### Equity

- Prices should remain affordable
- Focus on the way costs are shared
- Subsidies might be useful (but they must be financed in some way)

|                                                                       | Ecological sustainability                                                                                                                         | Economic efficiency                                                                                                                                                 | Financial sustainability                                                                                      | Equity / affordability                                                                                                                       |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Uniform license<br>fee                                                | Very poor. No incentives to water saving                                                                                                          | Acceptable as a way to recover the fixed cost; inefficient if MC component is relevant                                                                              | Potentially OK, but commitment to cost recovery required Avoid political determination of fees                | Very regressive                                                                                                                              |
| Non-uniform<br>flat rate                                              | Poor, unless rates are eventually calculated according to specific circumstances (eg surface of gardens; swimming pools; water recycling devices) | Acceptable as a way to recover the fixed cost; inefficient if MC component is relevant                                                                              | As above, provided that total revenues are guaranteed                                                         | Potentially good effects,<br>provided that criteria used<br>correspond to personal wealth                                                    |
| Uniform<br>volumetric rate<br>+ stdng charge                          | High, depending on the marginal rate + individual metering                                                                                        | Potentially the best solution provided r = SRMC and fixed charge = lump-sum; particularly suited in case SRMC is constant (eg electricity, reagents)                | Good                                                                                                          | Potentially good effects,<br>provided that criteria used<br>correspond to personal wealth                                                    |
| Uniform<br>volumetric rate                                            | As above; higher, since std charge = 0 means marginal rate >                                                                                      | Not very efficient especially for capex; inefficiency depends on demand elasticity (the lower e, the lower inefficiency)                                            | Good                                                                                                          | Encourages connection                                                                                                                        |
| Uniform<br>volumetric rate<br>+ rebate                                | As above Highest if rebates take into account specific circumstances (eg surface of gardens; swimming pools; water recycling devices)             | As above; In turn, could be efficient in combination with a positive fixed fee (idea: r = SRMC; fixed cost redistributed including a rebate for the poor)           | Good                                                                                                          | Progressive and useful for reducing impact on poor Best if rebate is targeted; otherwise, distributive effect depending on income elasticity |
| Traditional IBT +<br>st charge                                        | Highest, provided that metering is individual and marginal rates in the upper blocks are high                                                     | Potentially the best solution provided r = SRMC and fixed charge = lumpsum; particularly suited in case SRMC is increasing (eg costly extra supply to be purchased) | Good potential for FCR Attention in case of a sudden move from flat charges to IBT: consider effect on demand | Regressive, according to demand elasticity to income                                                                                         |
| IBT + exact occ.<br>amendment                                         | Highest, provided that metering is individual and marginal rates in the upper blocks are high                                                     | As above                                                                                                                                                            | As above                                                                                                      | Reduces impact on large families                                                                                                             |
| IBT+ default 1 <sup>st</sup> block + targeted subsidies to low income | Highest, provided that metering is individual and marginal rates in the upper blocks are high                                                     | As above                                                                                                                                                            | As above                                                                                                      | Not very useful; subsidies tend to miss the target. Subsidized block not targeted to the poor                                                |
| Additional<br>temporal tariff                                         | Not very useful unless used as a complement to bans to certain uses (eg garden irrigation)                                                        | Good for reducing demand in peak periods and optimizing capacity use                                                                                                | No effect (unless extra revenues are used for compensating RC)                                                | Potentially regressive: poor<br>more likely to give up using<br>water in peak/stress periods                                                 |

# Different problems

#### Infrastructure ⇔ cost recovery

- Labur and capital needed for providing water services
- Dominated by fixed cost
  - Long economic life of assets
  - Cost of capital depends on patterns of risk allocation
- Main issues:
  - Guarantee that costs are recovered in some way
  - Guarantee that costs recovered do not include monopoly rents
  - Guarantee that the capital provision is cheap (allocation of risk)
- Typical conflicts:
  - cost sharing (who pays what)
  - privatization / commercialization

#### **Demand management** ⇔ **incentives**

- The value of water in alternative competing uses
- By definition it is a marginal cost (varying with m3)
- Main issues
  - Enforcing property rights
  - Promoting awareness and collaborative behaviour
  - Short-term elasticity is low; simply raising prices during water stress not a solution
  - Requires information that is most unavailable and costly to obtain
- Not only prices!!
  - Taxation (ear-marked)
  - Targeted subsidies
  - Market-based transactions (eg direct bargaining)
  - Regulation

## **CONCLUDING REMARKS**

## Evidence from case studies

- Completing / improving the infrastructure still a priority
  - Need for a more effective financial strategy
  - Collective affordability vs. individual affordability
- "Tragedy of commons" in Mediterranean countries
  - Groundwater overexploitation, mostly due to uncontrolled private abstraction
  - Uncontrolled urban and industrial development
  - Water governance lagging far behind the problem; so far concentrated in supplying concrete, but unable to keep the path of explosive demand
- Decoupling cost recovery from economic incentive
  - Cost recovery mostly deals with capital cost in the long run; priority to guarantee reliability and timeliness of fund availability, not the fact that they are paid by users in proportion of water demand
  - Incentive mostly deals with (marginal) impact on individual behaviour;
     priority to targeting the signal, regardless costs are recovered or not

## Main recommendations

- Pricing is a fundamental tool, but not a magic stick
- Design of economic instruments is critical
- Political acceptability should be built through PP
- Affordability important, but do not overemphasize
- Conflicting objectives require alternative approaches targeted at policy priorities
- Do not overlap incentive purposes and cost recovery
- Define a financial strategy for capitalizing water service provision; cost recovery mostly a financial (and not economic) issue
- WFD art. 8 should be adapted in order to be applicable to Mediterranean countries